不想再看無腦的台灣電視節目把觀眾當白癡耍,也厭倦了網路充斥內容農場標題聳動而毫無根據的文章,還是靜下來好好的閱讀書籍充實自己吧!
今天,在這兒跟各位推薦一本好書:機器學習駭客秘笈!!!




-暢銷書排行榜
本週排行榜第一名:
很多網友都推薦說讚喔!


下面是整理了關於同類書籍的介紹,都是今日的優惠折扣,過了今天價格就會調回原價 趕快點進來撿便宜喔!
點下面的圖片進去, 就可以看到整理的分享!








機器學習駭客秘笈

















  • 《機器學習駭客秘笈》




    「本書提供許多絕佳的機器學習實用案例。有別於工具書或理論證明,本書著重於實際問題處理,因此具備程式設計背景及對機器學習有興趣的讀者們均可輕鬆入門。」
    - Max Shron, OkCupid

    如果你是平時喜歡上網蒐集各種資料的程式設計師,想尋找並學習資料分析的方法與工具,本書將會是您了解機器學習最好的起點。在Machine Learning領域中,包含各種分析問題的工具與方法,可以讓我們很方便地架構出一套自動分析資料系統,使電腦可以自動分析。不過這些方法的背後,通常都蘊含著艱澀、難懂的數學理論,因而提高了學習門檻。有鑑於此,本書作者Drew Conway和John Myles準備了許多實用案例。在本書中,他們將以生動活潑的方式,使用案例導向方式,透過生活實例,帶領我們一起學習這些Machine Learning工具和統計工具的實際應用。經由這些過程學習機器學習領域的核心與價值,而非傳統數學導向的介紹方式。

    本書採用實例導向、問題導向的介紹方式,在每一個章節中,透過實際問題,介紹機器學習典型問題與解決方法。其中包含:分類問題、預測問題、最佳化問題、推薦系統建置問題...等,在書中都會一一介紹。本書所有程式均以R語言撰寫,於每個章節中將學到:如何以R語言分析資料,並撰寫簡易機器學習演算法。《機器學習駭客秘笈》本書,是專為機器學習領域的初學者所寫的,無論是商業、政府機關或學術界...等都適用。

    在本書中,您將學到:
    ● 建立單純貝氏分類器(Naive Bayesian Classifier)對電子郵件內容進行垃圾信件判別
    ● 以線性回歸,預測網站的瀏覽人次
    ● 以最佳化技術破解簡易字母密碼
    ● 運用記名投票紀錄,以統計方式對美國參議員進行分類
    ● 以推特社群資料建立「潛在關注對象」推薦系統

















    • 作者介紹






      Drew Conway

      為美國紐約大學政治學博士候選人。其研究領域以數學與統計工具,分析國際關係、國際衝突與恐怖主義。擁有多年擔任美國情報與國防體系分析師的工作經驗

      John Myles White

      為美國普林斯頓大學心理學博士生。研究主題為「人類決策過程」的理論與實驗。同時也是諸多R語言套件之主要維護者,包含ProjectTemplate和log4r等熱門套件





















    編/譯者:林威仰
    語言:中文繁體
    規格:平裝
    分級:普級
    開數:18.5*23
    頁數:320


    出版地:台灣


















  • 作者:Drew Conway- John Myles White




  • 譯者:林威仰








  • 出版社:歐萊禮




  • 出版日:2015/5/7








  • ISBN:9789863475934




  • 語言:中文繁體




  • 適讀年齡:全齡適讀












機器學習駭客秘笈

    全站熱搜

    倩倩 發表在 痞客邦 留言(0) 人氣()